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Introduction

The purpose of the present paper is to generalize the theory of conjugate 
convex functions in finite-dimensional Euclidean spaces, as initiated by 
Z. Birnbaum and W. Orlicz [1] and S. Mandelbrojt [8] and developed by 
W. Fenchel [3], [4] (cf. also S. Karlin [6]), to infinite-dimensional spaces. 
To a certain extent this has been done previously by W. L. Jones in his 
Thesis [5]. His principal results concerning the conjugates of real functions 
in topological vector spaces have been included here with some improve
ments and simplified proofs (Section 3). After the present paper had been 
written, the author’s attention was called to papers by J. J. Moreau [9], [10], 
[11] in which, by a different approach and independently of Jones, results 
equivalent to many of those contained in this paper (Sections 3 and 4) are 
obtained.

Section 1 contains a summary, based on [7], of notions and results from 
the theory of topological vector spaces applied in the following. Section 2 
deals with real functions f defined on subsets I) of a locally convex topo
logical vector space. In particular convex functions are considered. In 
Sections 3 and 4 the theory of conjugate functions is developed. The starting 
point is a pair of locally convex topological vector spaces Ex, E2 which are 
(topological) duals of each other. For a function f with domain D Ç- Elf 
briefly denoted by (Z), /*),  we define

I)' = { £ e E2 I sup (Ç x — /’ ( x)) < co }. 
xe D

If D' is non-empty, the function (D', f,y), where

f(Ç) = sup (Ç x-f(x)) for Ç e J)', 
xe D

is called the conjugate of (7), /*).  Analogously the conjugate of a function in 
E2, in particular the second conjugate (ZF, f") of (D, f), that is, the conjugate 
of (I)', f'\ is defined. In Section 3 elementary properties of (I)', f,y) and 
(D", f") are studied, and necessary and sufficient conditions in order that a 
convex function (I), f) have a conjugate and that it coincide with its second 
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4 Nr. 2

conjugate are given. In Section 4 the conjugates of functions derived from 
others in various ways are determined. Finally, in Section 5 the class of 
convex functions (I), f) in Ex which coincide with their second conjugates 
and have the property that their domains D as well as the domains I)' of 
their conjugates have relative interior points is characterized in the case of 
Banach spaces Ex and E2.

1. Topological vector spaces

In the following R denotes the set of reals, R+ the set of positive reals 
and Z+ the set of positive intergers. When R is considered as a topological 
space, the topology is the usual one. All the vector spaces considered are 
vector spaces over R.

Let E be a vector space over R with elements o, x, y, . . . , o being the 
zero element, and let T be a Hausdorff topology on E. If the mappings Ex 
E E defined by (x, y) -^x+y and RxE -> E defined by (a, x) -> ax are 
continuous, E is said to be a topological vector space. S is then called a 
vector space topology, and E is denoted E [X].

If F is an algebraic subspace of E [T], then F is a topological vector space 
in the induced topology.

If S3 = {T} is a basis for the neighbourhood system of o in E [T], then 
(x + V I is a basis for the neighbourhood system of the point x.
There exists a basis S3 such that all V e S3 are symmetric, in the sense thal 
x e V and | a |ST imply ax e V. If b 0 and V c S3, then bV e S3. A subset M 
of E [T] is said to be bounded if for all VeïB there exists a ccR such that 
M c eV. Any set consisting of only one point is bounded.

The dual space of E [X], denoted (E [£])', is the set of continuous linear 
functions on E [T], organized as a vector space in the well-known manner. 
For Ç c (E [X])' the value of £ at x g F [T] is denoted § x = x

A set M Ç F [X] is called convex if (l-t)x + tyeM for all x,yeM, 
0<f^l. The set ajMj 4-a2M2 + . . . + anMn is convex for Mi convex, at e R, 
i = 1, 2, ... n. The intersection of convex sets is convex. The smallest con
vex set containing a set M, i.c. the intersection of all convex sets containing 
M, is denoted convJf. It consists of all points x = «« xt, where a« g R,
Xi c M, ne Z+ and m = 1. The set convM is the intersection of all 
closed convex sets containing M, and convdf = convM. If M is convex, then

— ° oalso the closure M of M and the interior M of M are convex sets. If M is 
not empty, then (l-t)x + tyeM for all yeM, xeM and 0<Kl.We 
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express this by saying that all points in M can be reached from M. 
Further M = M and M = M.

A topological vector space is said to be locally convex if there exists a 
basis for the neighbourhood system of o consisting of convex sets. Normed 
spaces are locally convex topological vector spaces. A subspace of a locally 
convex space is itself locally convex.

Let E± and E2 be vector spaces over R, and suppose that there exists a 
bilinear mapping 33 : E2xEr -> R with the following two properties:

(i) For all x e Ex, x o, there exists a Ç c E2 such that 33(^,x) # 0.
(ii) For all <; e E2, Ç o, there exists an x e Er such that 33(Ç,x) 0.

We then say that E1 and E2 are in duality under 33.
Let E1 and E2 be in duality under 33. Then every £ e E2 is a linear func

tion on Els and every x e Er is a linear function on E2, namely Çx = xÇ = 
33(£,x). There exist at least one locally convex topology Xi on Ex and at 
least one locally convex topology X2 on E2 such that E2 is the set of con
tinuous linear functions on £'1[£1] and Ex is the set of continuous linear 
functions on E2[X2], that is, (£’1[X1])/= E2 and (£2[X2])' = ^i- Such topo
logies are called admissible.

If E [X] is locally convex, and E' is the dual space, then E and E' are 
in duality under 33 (Ç,x) = Çx, and X is an admissible topology on E.

Let E [X] be a normed vector space, X denoting the topology induced 
by the norm, and let E' be the dual space. It is well-known that || Ç || = 
suP||x||^i I I *s a norm in E'. The topology X' induced by this norm is 
admissible if and only if E [X] is a reflexive Banach space. In that case 
E' [X'] is also a reflexive Banach space.

Let E± and E2 be in duality under 33. Defining a(x, x) = (ax, ax) and 
(x, x) + (j>, y) = (x+y, x + y), EyyR is a vector space over R. Likewise for 
E2xR. Further, ExxR and E2xR are in duality under 33((^, £), (x, x)) = 
®(t x) + £x. If Xj is a locally convex topology on Elf then L1[X1]x R, that 
is, ErxR supplied with the product space topology, is a locally convex space. 
If Xj is admissible, then the topology on E1[X1]x/? is also admissible. A 
basis for the neighbourhood system of the zero element (o, 0) in £'1[X1]x7? 
consists of all sets of the form VxRe, where V is in a basis for the neighbour
hood system of o in /yJXj], ee R+ and R£=(aeR\ |a|^e). Likewise 
for E2.

Let and E2 be in duality. For a subset M of E1 we define

AT1 = { Ç e E2 I £x = 0 for all x e A/}.

Likewise for MQE2. Putting (A/1)1 = A/11 and (A/11)1 = A/111, we have 
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M c Af±x and Afx = Jfxxx for any subset 37. Further, Af1 and Afxx are sub
spaces which are closed in every admissible topology, and Af = Af11 if and 
only if Af is a subspace which is closed in every admissible topology.

2. Functions (D,f)

Let E [X] be a locally convex topological vector space. Then also E [5]xR 
is a locally convex topological vector space.

The functions considered in the following are real functions defined on 
non-empty subsets of E. A pair consisting of a function f and its domain 
D will be denoted (D, f) and called a function in E.

A linear manifold in a vector space E is a set of the form y + H, where 
H is a subspace in E. The intersection of closed linear manifolds is a closed 
linear manifold. The intersection of all closed linear manifolds containing 
a subset M of E [X] is denoted m(Af). An interior point of Af in in(M) is called 
a relative interior point of Af.

If y + H is a linear manifold in E, and H has codimension one, then 
y + H is called a hyperplane. For every hyperplane y + H in E there exists 
a linear function Ç on E and a ce R such that y + H = { x e E | §x = c}. 
Conversely, if £ is a linear function on E and c is in R, then the set 
{xc E I ^x = c) is a hyperplane in E. Let E [X] be a topological vector 
space. Then the hyperplane y + H is closed if and only if a corresponding 
linear function Ç is continuous. A non-closed hvperplane is dense in E [X].

For e (E [X])' and c e R, the sets (xeE|£x^c) and {xcE| ^x^c} 
are called the closed halfspaces determined by the hyperplane. They are 
closed convex sets. The sets {x e E \ £x <c) and { x e E | £x>c) are called 
the open halfspaces determined by the hyperplane. They are open convex sets. 
A closed hyperplane in E [X] is said to separate the sets A and B if A is con
tained in one of the two closed halfspaces determined by the hyperplane 
and B is contained in the other one. If A is contained in one of the open half
spaces and B in the other one, then the hyperplane is said to separate 
strictly. In that case A and B have no common points.

In locally convex spaces we have the following theorems:

1.1 If A is a closed convex set and x is a point not contained in A, then 
there exists a closed hvperplane which separates A and (x) strictly ([7] 
p. 245).

1.2. Every closed convex set A is the intersection of all closed halfspaces 
containing it ([7] p. 246). 2
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If x e D has a neighbourhood x + V such that (x + V) fl (7)\{x}) is empty, 
then x is called an isolated point of D. Convex sets consisting of more than 
one point have no isolated points.

If (7), f) is a function in E, we define for a non-isolated point x e D 

lim inf f(z) = sup {inf J f(z) | z e (x + V) fl (D\{x)) } },
z->x Re 53

where 23 is a basis for the neighbourhood system of o in E. If xel) is 
isolated, we put

lim inf f (z) = f (x).
z-»x

Let (J), f) be a function in E. We say that fis lower semi-continuous at 
a point x e I) if

f (x) lim inf f (z).
z->x

If fis lower semi-continuous at every point of D, (D, f) is said to be lower 
semi-continuous.

If (I), f) is a lower semi-continuous function such that for all x e J)

lim inf f (z) < oo implies x e D,
z->x

then (7), /) is said to be closed. Theorem 2.2 below motivates this definition.
A function (7), f) is said to be convex if D is a convex set and

/*((!  — f)x+fy) (1 -0 f(x) + tf(y)

for all x, y e D and 0 < t 1 .
For any function (7), /) we define

[D, f] = { (x, æ) c E x 7? I x e D, x f (x) }.

Then the following statement obviously holds.

2.1. A function (D, f) is convex if and only if [D, f] is a convex set.

Further, we have

2.2. A function (D, f) is closed if and only if [D, f] is a closed set. 
Proof. For a e R we define

Ta = {x e D \ f(x) < a}.

If (7), f) is a closed function, then Ta is closed for every a e R. For, x 
not in Ta implies x not in D or

lim inf^*  f (z) > a.
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Thus there exists a Vc$ such that (x + F) A Ta is empty, which proves 
that the complement of Ta is open. Now let (y, b) e [Z>, /’]. Then ye Ta= Ta 
for every a > b, whence y e D and f (y) b. Consequently (y, b) e [D, f], 
and so [D, f] is closed.

Conversely, let [D, f] be closed. Obviously the set

J (x, a) e E x Z? | x e E )

is closed for every a e R. Thus,

[D, f] A ' (x, a) | x e E }

is closed for every a e R. This implies that Ta is closed for every « e R. To 
prove that (Z), f) is closed we consider an x e D such that

b = lim inf /' (z) < co.
z->x

Now b = — co would imply x e Ta~ Ta for every a e R which is impossible. 
Hence b e R, and clearly x e Tb = Tb. So x e D and f (x) S b which proves 
that (Z), f) is closed.

As a consequence of 1.2, 2.1 and 2.2 we have

2.3. IfZr and T2 are locally convex vector space topologies on E such that 
(E [Sj])' = (E then and $2 determine the same closed convex func
tions in E.

2.4. If (I), f) is a convex function, then / (x) lim inf f (z) for all
„ Z-»Xx e D.

Proof. If D= (x), there is nothing to prove. Otherwise consider a 
y e D, y x. For 0 < / 1 we have (1 — f)x+ ty e D\ {x}. Then

lim inf f (z) < lim inf ((1 - f) f (x) + tf (y)) = f(x).
z-+x £->0

From 2.4 we deduce

2.5. A convex function (I), f) is closed if and only if

D = {x e 1) I lim inf f (z) < co }
and

f (x) = lim inf f (z) for xeD.
z->x

The following four propositions are valid for arbitrary topological vector 
spaces.
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2.6. If (I), f) is a convex function, and there exists an x c I) such that 
f is bounded below in some neighbourhood of x in D, then we have:

(i) f is bounded below on every bounded subset of D.
(ii) Every point of D has a neighbourhood in D in which f is bounded 

below.
Proof. We may assume that x = o e I) and f(o') = 0. Let bell and 

Ve 58, V open and symmetric, be such that f (z)^b for all z c V A D. Let 
0<f^l. For every z e t^1V A D we have

(1 - t) o + tz e FAD,
whence

b < f ((1 -t) o + tz) (1 -t) f(o) + tf (z),
that is

/'(»)& r'b.
I

If M is a bounded set, then M Q t~1 V for some t, where 0 < t 1. In par
ticular, for every y c I) there exists a t, where 0 <t 1. such that y e f_1V. 
And t~1V is a neighbourhood of y. Hence, the assertions (i) and (ii) follow 
from what has been proved above.

Obviously 2.6 (ii) is equivalent to

2.6. (iii) If (D, f) is a convex function, then either

lim inf f (z) > - co for all x e I)
z^-x

or
lim inf f (z) = - co for all x e D.

z->x

Remark to 2.6 (iii). In finite-dimensional spaces we always have 
the first alternative, whereas in infinite-dimensional spaces the second one 
may occur. Every non-continuous linear function £ in a topological vector 
space E [£] provides an example, since for all c e R the set {x | £x = c} is 
dense in E [X].

Next we prove (cf. [2] p. 92).

2.7. Let (D, f) be a convex function, and let D be open. If there exists a 
point x e D such that f is bounded above in some neighbourhood of x, then f 
is continuous on D.

Proof. Obviously we may assume that x = o and f (o') = 0. Let a e R 
and Ve 58, V symmetric, be such that f (z) < a for all z e V. Consider an e 
such that 0<£<l. If z e eV, then
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f O) = /(g -£) o + £ (“z)j < (1 - e) /(o) + £ /^- zj < ca,

since £ 1 z e V. Further

since -e-1ze V. Hence we have proved that z e eV implies | f (z) | < ea. 
This shows that f is continuous at x.

Let y be in I). We shall prove that y has a neighbourhood in which f 
is bounded above. This will complete the proof of 2.7. Since D is open, 
there exists a g> 1 such that gy e I). Let z be in j + (l V, where V has 
the same meaning as above. Then 

z

with y0 e V c D. Since 0 < g 1 < 1 , this implies z e I). Hence .y + (1 — g x) 1 
c D. Further

f O)^/’(ey) + (i fOo) ^f(ey) + (i

which proves that f is bounded above in y +

2.8. If (D, f) is a convex function, and D has a non-empty relative interior 
I), then the following statements are equivalent:

o
a) At least one x e I) has a neighbourhood in I) in which f is bounded 

above.
o

b) Every xe D has a neighbourhood in J) in which f is bounded above.
o

c) f is continuous at at least one x e 1).
o

d) f is continuous on D.
e) [D’ f] has a non-empty relative interior.
Proof. We may assume that m (D) is a subspace. Since I) is open and 

o
convex in m (I)), we may apply 2.7 to the function (D, f), i.e. the restriction 

o
of f to J). This yields the equivalence of the statements a), b), c) and d). 
Since m([D, /*])  = m(D)xR, the statements a) and e) are obviously equiv
alent. Thus 2.8 is proved.
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2.9. If (I), f) is a convex function, and [D, f] has a non-empty relative 
interior [D, f], then D has a non-empty relative interior I), and the projection 
mapping ExR-+E maps [D,°f] onto I).

Proof. This is an immediate consequence of 2.8.

Finally, we shall prove a result concerning convex functions in Banach 
spaces.

2.10. J.et (D, f) be a lower semi-continuous convex function in a Banach 
space, and let I) have a non-empty relative interior I). Then fis continuous on I).

Proof. We shall use the following lemma (cf. [7] p. 45):
Let S be a complete metric space and ç? a lower semi-continuous function 

on S. Further, let T denote the set of points in 5 having a neighbourhood in 
which g is bounded above. Then T is dense in S.

. o . °There exists a closed set S c D with a non-empty interior S in m(D). 
o

Applying the lemma to the restriction of f to S, we obtain that S contains a 
point x such that fis bounded above in a neighbourhood (x + V) A S of x 
in S. But (x + V) fl S is also a neighbourhood of x in D. Hence the assertion 
follows from 2.8.

3. Conjugate functions

Let Ex and E., be two vector spaces in duality under 03, and let Xj and 
+2 be admissible topologies on Et and E2. Then E2 = (Er and Ex = 
(E2 [X2])'. Further E1xR and E2xR are in duality under Ô3((Ç, £), (x, ,r)) 
= 53 (^, x) + £.r = Çx + Çx, and the product space topologies are admissible. 
So (Ei [X1]x7?)/ = E2 <R and (E2 [£2]x7?)' = ErxR.

For a function (7), f) in 7i\ we define

D' = {£ e E2\ sup (Ç x - f (x)) < oo },

f ' (Ç) = sup (Çx - f (x)) for £ e I)'.
xeD

The set I)' may be empty. If D' is not empty, the function (7), f)' = fD',f') 
in E2 is called the conjugate of (I), f).

If (T, gj is a function in E2, the conjugate (T", <p') in Ex is defined anal
ogously. In particular we have a second conjugate (j), ff" of a function 
(7), f) in Ex, namely the conjugate of (7)', f'). Setting (jD'y = I)", (f')' = f", 
we have for the second conjugate (7), f)"= ((D')', (j')') = (D", f")

D" = { x e Er I sup (Çx - f'(Ç)) < 00 },
§eD'
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/’"(*)  = sup (Çx-/'(O) forxeZT.
£ e z>'

Hereafter the meaning of (Z)(w), n e Z+, is clear.
In the set of functions in a vector space a partial order relation is 

defined by
(Z^, fi) < (D2> fz) if and only if [D2, f2] Ç [Dlf fr].

Then (Z)x, fx) (D2, f2) holds if and only if D2 Dr and f2 (x) f2 (x) for 
all x e J)2. Accordingly, (Dlt ff) is called a minorant of (D2, f2), and (Z)2, f2) 
a majorant of (Z)15 ff), when (Z)x, ff) (Z)2, f2).

3.1. If (D, f) has a conjugate, and (I), f) ^{D1, ff), then (Z)ls f2) has a 
conjugate, and {!)[, ff) (I)', f').

Proof. Let he in D'. Then

f' (€) = sup (Çx-/’(x)) > sup (^x-/\ (x>),
x e D x e Dt

which implies £ e I){ and fj (§)^/’'(£). This proves 3.1.

3.2. If (D, f) has a conjugate, then it has a conjugate of any order n e Z+.
Further (D", f") (I), f), and (lFn\ fhhj equals (I)', f) for n odd, (IF, f")
for n even.

Proof. Let x be in D. Then we have f (x)^§x - f'(£) for all Ç e D', 
which implies x e IF and f (x)> f"(x). Hence, (D, f) has a second con
jugate, and (Z)", f") (I), f). Since (ZK, f") is the conjugate of (I)', f), the
same argument applied to (Z)', f) shows that (Z), f) has a third conjugate, 
and {I)"', f'") < (Z)', f'). In particular, (Z)~, f") has a conjugate, and since 
(IF, f") £ (D, fj, 3.1 yields (ZT, f ) {IF", f'"). Hence (D"', f'") = (Z)', f). 
Hereafter, the unproved part of 3.2 follows by induction.

A closed hyperplane in ZT1[T1]xZ? is a set of the form
{(x, ,r) e E1 x R | v\x + gx = c ) ,

where (T), rf) e (E1[T1]xZ?)/ = Z?2xZ? and c e R, that is the set of those points 
(x, x) at which a continuous linear function (p, if) takes the value c. For 
the sake of convenience we specify the hyperplane by its equation r\x + r]x 
= c. A hyperplane qx + i/.r = c in E^H^xR is called vertical if 77 = 0, non
vertical if 77 =#= 0.

Let M be a non-empty subset of ZpfTjxZ?. By a barrier of M we mean 
a non-vertical closed hyperplane such that JZ is contained in one of the two 
closed halfspaces determined by the hyperplane. This means that if qx + 
gx = c is a barrier of JZ, we have either t\x + t]X c or v\x + r/x c for all 
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(x, x) e M. If M is of the form [D, f], the equation of a barrier r\x + rjx = c 
can always be written in the form Çx - x = £, (£,- 1) e E2xR, £ e R, and 
such that Çx-x £ for all (x, x) e M = [D, f]. For, division by gives an 
equation of the form ^x — x = Ç, and Çx-x^l; for all (x, x) c [D, f] is 
impossible, since (x, x) e [D, f] and k e R+ implies (x, x + k) e [D, f].

A barrier of the set [D, f] will also be referred to as a barrier of (77, f).
The previously defined barriers of a function (I), f) have a close relation 

to the conjugate of (D, f). Let (7), /) be a function in Elt and let §x-.r = 
£, where (Ç,-1) e E2x/?, £ e R, be a barrier of (I),f). Then Ç^Çx-x for 
all (x,x)c[D,f]. In particular, £^^x-/(x) for all x e D. Hence Ç e D' 
and £^/’/(Ç), and so (Ç, £) e [D',f']. Conversely, let (D, f) have a con
jugate, and let (Ç, £) be in [D', f']. Then we have

Ç f' Çx - f (x) > Çx -x

for all (x, x) e [D, f], which shows that Çx-x = £ is a barrier of (71, f). 
Hence, we have proved

3.3. A function (I), f) has a conjugate if and only if it has a barrier. 
If (D, f) has a conjugate, then the point (Ç, £) is in [I)', f'] if and only if the 
hyperplane {(x, x) \^x — x = £y is a barrier of (D, f).

Because of the duality, 3.3 is also valid for functions in E2, in particular 
for (7)', f ). This gives

3.4. If (I), f) has a conjugate, then the point (x, x) is in [D", f"] if and 
only if the hyperplane {(§,£) | £ x -£ = x } is a barrier of (IE, f').

From 3.3 and 3.4 follows immediately

3.5. If (I), f) has a conjugate, then

o [»',ri- n {ce,
(x, x) e [n,/J

(ii) [I)", f"] = p { (x, .r) I ^x-x A £}.
(Ç, £) elD'.ri

Consequently the sets [I)', f] and \D", f"] are both intersections of closed 
halfspaces, and thus convex and closed. Thus, by 2.1 and 2.2, we have

3.6. Theorem. If (I), f) has a conjugate, then (D', f') and (O', f") 
are closed convex functions.

Concerning the existence of conjugates we have
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3.7. Theorem. If (D, f) is a closed convex function, then it has a conjugate.
Proof. For y e I) and kcR.~ the point (y,f(y)-k) is not in [D,f], 

Consequently (cf. theorem 1.1) there exists a closed hvperplane v\x + gx = c, 
(Tj, rf) c E^R, c e R, that strictly separates [D, f] and the point (y, f (y) - k). 
We can assume r\x + gx<c for all (x, x) e [D, f] and r\y + g (f(y) — k) > c. 
Since y e 1), it follows that g 0. Hence qx + ?/x = c is a barrier of (79, f).

In 3.2 we showed that (D", f") (I), f). A fundamental question is under
which conditions (79", f") = (79, /’) holds. By 3.6, it is necessary that (79, f) 
be convex and closed. Theorem 3.10 below states that this is also sufficient. 
In the proof we shall use

3.8. Let M be a closed convex subset of E1x R. If M has at least one barrier, 
then M is the intersection of all closed halfspaces containing M and bounded 
by barriers of M.

Proof. Being convex and closed, M is the intersection of all closed 
halfspaces containing it (cf. theorem 1.2). Thus we have to show that if 
there exists a vertical closed hyperplane separating 47 and the point (y, yj, 
and not containing (>>, y), then there exists a non-vertical closed hyperplane 
with the same property. Let jx = c, (3, 0) e E2x R, ceR, be a vertical 
closed hyperplane in Exx R such that ~^y>c and jx^c for all xep(47), 
p denoting the projection mapping Epx R -> Er. Further let qx+^x= y, 
(r|, g) e E2x R, g 0, y e R, be a barrier of 47. We may assume r\x + gx y 
for all (x, .r) e 47. Now, for every t e R+

{ (x, .r) c E1 x R I (q + f3) X + gx = y + tc )

is a closed non-vertical hvperplane such that

(q + / j) x + gx y + tc
for all (x, x) e 47. If

(q + il)y + yy y + tc,
then

t (3y~c) y-c\y~gy.

But this cannot be true for all t e R+ since 3y>c. Consequently, there exists 
a t0 such that

(B + to ifty + yy > y + toc,

and so the non-vertical hvperplane

{ (x, æ) e E± x 7? | (q + /0 3) x + gx = y + toc}

separates 47 and the point (y, y), and does not contain (y, g).
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3.9. Theorem. If (D, f) has a conjugate, then

[D", f"] = conv [D, f].

Proof. By 3.3 and 3.5 (ii), [D", f"] is the intersection of all closed 
halfspaces containing [I), f] and bounded by barriers of [D, f]. Since the 
barriers of [D, f] are identical with the barriers of conv [D,f], it follows 
from 3.8 that conv [D, f] is the intersection of the same closed halfspaces 
as [D", f"], which proves the statement.

Since for a closed convex function (7), /)

[D, f] = conv [D, f],

3.9 yields the theorem previously mentioned:

3.10. Theorem. If (D, f) is convex and closed, then (D, f) =■■ (7)", f").

We note that, under the assumptions of 3.10, the existence of (7)", f") is 
ensured by 3.7.

As easily seen, there exists a closed convex minorant of the function 
(7), /) if and only if (7), /”) has a conjugate. In that case there even exists 
a greatest closed convex minorant of (I), /) namely (7)", For, let (Dlf 
fi) be a closed convex minorant. Then [7)15 fr] is a closed convex set, and 
[D, f] c [7?!, fjj. By 3.9, this implies [D", f"] Q [Dlt fr]. So we have proved

3.11. Theorem. If (D, f) has a conjugate, then (D", f") is its greatest 
closed convex minorant.

The question arises which functions do have conjugates. A necessary 
condition is that

lim inf f (z) > - oo for all x e I).

For, let ^x — x=^ be a barrier. Since Ç is continuous, it is possible 
for every x c E to find a Ve® such that £z Çx- 1 for all z e x + V. From 
this we deduce

lim inf f(z) > inf {/(z) | z e (x + V) fl (7)\{x})}

inf (£z-£]zex + V}^£x-l-£> - oo.

We shall prove that, for convex functions, this is also sufficient.

3.12. Theorem, (i) Let (D, f) be a convex function. Then (D, f) has 
a conjugate if (and only if)

lim inf f (z) > - co for all x e D.
z->x
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In view of 2.6. (iii), we may also formulate the theorem in the following 
way :

3.12. Theorem, (ii) Let (I), f) be a convex function, and let x be an 
arbitrary point in D. Then (D, f) has a conjugate if (and only if)

lim inf f (z) > — co .

Proof. Let (I), f) be a convex function such that for all x e 1)

lim inf f (z) > — 00 .

Then the function
/' (x) = lim inf f (z)

z-^x
is well-defined on the set

D = { x e 1) I lim inf f (z) < co J.

a) (D, f) is a convex function.
Proof of a). Let _y0 and be in Z), and consider yt = (1 -1) y/() + tylf 

where O.<_ I < 1. Let_y< +Vbe a convex neighbourhood of yt- From the defini
tion of (Z), /') it follows that for every s e R+ there exist a z0 e (+ V) A 
(Z)\{y0}) and a z1 e (yq + V) A (ZAj^i)) such that f (z0) f (y0) + e and 
f (zf) < f (y^ + e.

Since z0 and zx are in D, the point Zt = (1 - t) z0 + tzr is in D, and

fOO (1 -0 f (zn) + tf (zr) < (1 -/) f (y0) + tf (yd) + E.

Further z< e (1 - 0 (y0 + V) + t (y± + V) = yt + V. Hence
inf {/ O)| z e O + V) A 7) } (1 -/) f (y0) + t f (yf).

This implies
inf (f(z) I z e O + V) A (D\{yt})} < (1 - Z) f (yoï + t f (yi),

since, if yt e I),

f(yt) lim inf f (zj > inf {f(z)\ze (yt + V) A

Consequently
lim inf f (z) < (1 -/) f (y0) + tf (yf),

which shows that (I), f ) is convex.
b) (ZJ, /') is a minorant of (D, f).
Proof of b). From the convexity of (D, f) it follows that lim infz^x f (z)
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f (x) for all xeD. This implies I) Q I) and f (x) f (x) f°r x e Hence 
(D, /') is a minorant of (J), f).

c) For all x e D we have lim inf f (z) = lim inf f(z).
z-.*x  z-->x

Proof of c). Let x be in Z). Since (ZJ, /') is a minorant of (Z), f), we have 
inf (f(z) I ze (x + V) A (Z)\{x}) } 

inf { f (z) I z e (x + V) A (Z)\{x}) }

for all V e 2k This implies

lim inf f (z) lim inf f (z).
z-^-x z->x

To prove the reversed inequality we consider an arbitrary z0 c (x + u)n 
(0\{x}>, where V c 23 is assumed to be open. As the topology on is 
Hausdorff, and V is open, (x+ V)\{x) is a neighbourhood of z0. Let e e R+ 
be given. Since f (z0) = lim infzg<i f(z), there exists a z1 such that

z, e ((x+ V)\(x}) n (Z>\{z0)) S (x+ V) n (D\{x})
and

f (Zi) f(zj) + e.
This proves

inf { f (z) | z e (x + V) A (Z)\{x})} < f ( z0).
Hence

inf { f (z) | z e (x + V) D (Z>\{x})}

S inf { / (z) | z e (x + V) 0 (D\{x})},
and thus

lim inf f (z) < lim inf f (z).
z—z->x

d) (Z>, /’) is a closed function.
Proof of d). Let x be a point in D = D such that lim infz^.x f (z) < oo. From 

c) and the definition of (Z), /) it follows that xeD and f(x) = lim infz_^.x f (z). 
Hence, (D, f) is closed.

Now, from a), b) and d) it follows that (D, f) has a closed convex 
minorant. Thus, (Z), f) has a conjugate.

3.13. Theorem. If (D, f) is a convex function, and it has a conjugate, 
then the second conjugate (D", f") is determined by

D" = (x e D \ lim inf f (z) < ,
z —> X

Mat.Fys.Medd.Dan.Vid.Selsk. 34, no. 2. 2
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f" (x) = lim inf f (z) for x e D". 
z->x

Consequently, if f is lower semi-continuous at x e D, then f"(x) = /’(x).
Proof. Let (D, /) be convex. If it has a conjugate, then lim infz^x 

/(*)  >—oo for all xe D. Hence, we may define (79, /’) as in the preceding 
proof and prove that (79, /') is a closed convex minorant of (79, f). In fact 
(79, f) is the greatest closed convex minorant of (79, /). For, let (79ls ff) be 
a closed minorant of (79, /“). Then for every x c 79

lim inf f (z) < lim inf f (z) = / (x) < oo.
z -> x z-> X

Since (791; ff) is closed, this implies xe 79j and (x)^f(x), i.e. (79x, /j) is 
a minorant of (79, /’). Thus, by 3.11, we have (79, /) = (79", /'"), which proves 
the theorem.

4. The conjugates of functions derived from others

In this section we shall consider questions of the following kind. Suppose, 
a function (79, /) is derived in a certain way from functions (79/, //), i c .7, 
where J is an index set. Is the conjugate (79', /') determined by the conju
gates (Dp //), and in the affirmative case, in what manner?

4.1. Theorem. Let the function (Do, /0) have a conjugate (l)'0,f[f), and 
let (J), f) be defined by

D = x0 + Z79O

f (*)  = kfo 1 (*  - *o))  + So x + h,

where x0 e Elf Ço e E2, and h, k and I are reals such that k>0 and I 0. 
Then (I), f) has a conjugate (D', f') which is determined by

d1 = ^+kr1D'o
f (O - (UT1 (Ç - ?„)) + (? - Ç„) x„-h.

Proof. For all S e E2 we have

sup (Çx-f(xf) = sup (£x - kf0(Tl (x - xff) -$ox - h) 
xe D xe D

= k • sup (lk~1 (S - So) JV - A (y)) + (S ~ So) x0-h.
yeD0

This proves the theorem.
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4.2. Theorem. Let (Dx, ff) and (D2, f2) be closed convex functions such 
that I)1 PI D2 0, and let (I), f) be defined by

D = Dxt\D2, f (x) = fx(x) + f2(x).

Then we have:
(i) (I), f) is a closed convex function.
en) i»: n - to;. /i]+

(Hi) D'1+D'2QD' ^d[+d'2.
(iv) If [D', f'] has a non-empty relative interior, then

f'($) = inf {fx^i) + fi(^ I § = ^1 + ^2, e Ç2 e I)2}

for all in the relative interior of D'.
Proof, (i) The convexity is obvious. Since lim infz_>x fx (z) > - » for 

all x e Dx, and lim inf^*  f2 (z)> - co for all x e D2, the expression

lim inf fx (z) + lim inf f2 (z)
z -> X z —> X

is well-defined for all x e D Q Dx Cl I)2. Further, for all x e D

lim inf /’1(z) + lim inf f2(z) lim inf f(z).
Z->X Z-+X z-> x

Let x e D be such that lim infÄ^.x f (z) < co. Then, by the preceding ine
quality,

lim inf /‘1(z)+lim inf f2(z)< 00 •
z—> X Z-> X

As (Dj, /i) and (J)2, f2) are closed, this implies x e Dx C\ I)2 = D, and

/(*)  = fx (x) + f2(x) < lim inf /(z).
z->x

Thus (£>, f) is closed.
(ii) Dx n I)2 #= 0 implies [Dx, fx] Q [D2, f2] 0. Hence [Dlt fx] and

[Z>2, f2] have a common barrier Çx - Ç = x. Then §x-£ = 2x is a barrier of 
[Dx, fx] + [I)2, f2]. This implies that the closed convex set [Dx, fx] + [D2, f2] 
is of the form [JT, 99], where (F, 99) is a closed convex function in E2. Now 
(F', 99') = (I), f), which may be proved in the following way. If (x, .r) 
e [T', 99'], then

(§1 + ^2) *-(£ i + £2) < æ

for all (^, £x) e [Dx, fx], (Ç2, £2) e [I)2, f2], and this implies
2*
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sup (Ç x - /{ (£)) + sup (Ç X - f2 (O) â x •
Ç c Di £ e £),'

Hence x 6 77^ CI 7)2 = D1 Cl 772 = D, and

x > fï (x) + /2" (x) = A (x) + f2 (x) = f(x),

that is (x, x) c [D, f]. Conversely, for every (x, .r) e [D, f] we have

(£i +£2) x - (£1 + ^2) < fï(x) + /2"(x) = A (x) + /g (x) = /(x) < x

for all (£x, £x) c [D[, f[], (§2, |2) e [772, /2]. Thus Çx-Ç <x for ail 
(Ç, £) c [77^, fi] + [/)2, /2], and consequently then also for all (Ç, £) e
[77^, /i] + [^2’ A2] = t-T, *?]•  This shows that (x, x) e [F', (p']. Hence we
have proved (F', 99') = (77, /’). As (I1, 99) is convex and closed, this implies 
(F, 99) = (D', /'), which proves (ii).

(iii) This is an obvious consequence of (ii).
(iv) Since M = M, M convex, Mï0, it follows from (ii) that the rela

tive interior [D',°f'] of [D't f'] is equal to the relative interior of [D'lf f[] + 
[D'2, /2]. (Likewise, we have by (iii) that the relative interior of D' is equal 
to the relative interior of 77^ + 772). Hence

ID'.P'iQlD^f^ + ^.f’] Q[D', f'].

Let Ç be in the relative interior of 77'. Then, by 2.9, there exists a £ e 77 
such that (£j, £) e [D',°fr]. Since all points in [D', f] can be reached from 
[D'°f], we have

[D',7'1 g[o;,/i] + [ôâ,&
for all C > f (Ç) • Thus

r© - infp i © 0 e [«;, /■;] + [o;, £]},

which proves (iv).

In accordance with the partial order previously defined, a function 
(D, f) will be called a minorant of a set of functions {(77$,//) | z c ,7} if 
(77, ft) for all z c J. Analogously a majorant is defined.

If there exists a minorant of the set {(77/, fi) | z e .7), then the function 
(77, /) defined by

77 = U 77/,
ie J

f(x) = inf {fi(x)\ieJ,xe 77/}
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is the greatest minorant. We shall denote this function by ft), or
for the sake of brevity A (Zh, ft), and the set [D, /’] by A$e j [Zh, ft], or briefly 
A [Di, fi]. (Similar abbreviations will be used below in connexion with the 
symbols Â, V, U and A). Clearly

U [Di, fi] ç a [Di, fi] Q U [Di, fi].

If A {Di, fi) exists, then there exists a closed convex minorant of {{Di, fi)} 
if and only if \{Di, fi) has a conjugate {/\{Di, fi))'. In that case there exists 
a greatest closed convex minorant, denoted A {Di, fi), namely the second 
conjugate (A {Di, fi))" of A {Di, fi).

Of course, the greatest minorant of a set {{Di, fi)} of convex functions 
need not be convex. However, if the set {{Di, fi)} is totally ordered, 
A {Di, fi) is easily seen to be convex.

Suppose that there exists a majorant of {{Di, ft) | i e j}. Then the func
tion {D, f) defined by

D = (xe 0 Di I sup fi {x) < co},
iej iej

f{x) = sup fi {x)
iej

is the smallest majorant. This function {D, f) is denoted by V {Di, fi) and 
the set [D, f] by V [Di, fi].

Obviously, V {Di, fi) exists if and only if 0 [Di, fi] is non-empty, and in 
that case

V [Di, fi] = A [Di, fi].

Hence, the smallest majorant of a set of convex or closed functions is convex 
or closed, respectively.

4.3. Given a set of functions {{Di, fi) | ie J}.
(i) If A {Di, fi) and (A {Di, fi))' exist, then (A {Di, fi))' = V {D'it f-).
(ii) If V {Di, fi) and at least one {!)[, ff) exist, then {V {Di, fi))' 

I^{D'i,fi) (where A {D't, f-) means the greatest minorant of those {D^f) 
which exist).

(iii) If all {Di, fi) are convex and closed, and V {Di, fi) exists, then 
(V {Di,fi))' = a {Dit'-))".

In all cases the assumptions ensure the existence of the minorants, majorants 
and conjugates occurring in the statements.

Proof, (i) It is easily seen that the barriers of A {Di, fi) are precisely 
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the common barriers of {(7A,/))}. This implies that V(D-,/^) exists and 
that (i) holds.

(ii) For all / e J we have (Dj, /)) V (£)$, fi). Hence the existence of at 
least one (Dy,/y) implies that of (V (Di, fa))', and we have (V (D$,//))'rg 
(Dy, /y) for every / for which (Dj, f-) exists. This shows that A (D^, /i) 
exists and that (ii) holds.

(iii) Under the assumptions all (Df, //) exist. From (ii) follows that 
A (Dp /^') and (V (Di, fa))' exist and that (V (Dit fi))' < A (D't, f[). This 
implies that (A (D^, fa'))' exists, and (i) applied to {(D't, f-)} then gives

(a (d;, a'»' = v (d;, /f) = v (Di, fi),

since all (Di, fi) are convex and closed. Hence (A (D{, f-)) = (V (Di, fa))'.

4.4. Theorem. Let {(Di, fa)} be a set of closed convex functions. If 
A (Di, fi), (A (Di, fi))' and V (Di, fi) exist, then

(Å (Di, fi))' = V (!){, fa'),

(v (A,A))' = Å(D;,r;).

Proof. This is an obvious consequence of 4.3 (i) and (iii).

4.5. Theorem. Let {(Di, fi)} be a set of closed convex functions, and 
suppose that V (Di, fi) exists. For (I), f) = V (Di, fi) we then have

(i) [D', f'] = conv (U [D{, f']).

(ii) conv (U D'fa) C // C conv (U D'fa).
(iii) If [D', f] has a non-empty relative interior, then

f (S) = inf! £ Kf'ifiv)
tv= 1

n n
Ç = £ ÂVSV, e D't , Åv>0, Åv= 1, ne Z+ 

r = 1 v r = 1

foi’ all <; in the relative interior of I)'.
Proof, (i) All (Dfa fa) and A (Dfa fa) exist, and we have

This implies
U [D\. fi^^l)], fi] CU

conv (U [»•, fi]) - conv (A [A, /<’]).

since convM = convM for any set J/. Statement (i) then follows from 3.9 
and 4.3 (iii).
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(ii) This is a simple consequence of (i).
(iii) By (i) we have

[D',7'1 g conv (U [Bj, A'])g[O'. fL

[D'°f'] denoting the relative interior of [D', f']. Let Ej be in the relative in
terior of D'. Then (£, C) e for all £ > f' (Ç), that is

f (Ej) = inf {C I (S, C) e conv(U [Dj, f-])}.

5. Convex functions with domains having non-empty relative interiors

As usual, E1 and E2 are vector spaces in duality. We first prove a result 
concerning the structure of closed convex functions.

5.1. Let (D, f) be a closed convex function in Ex. There exists one and, 
obviously, only one subspace F1 of Elf called the linearity space of (D, fj, with 
the following properties:

(i) Fx is closed.
(ii) D + F^D.
(iii) For every x e I)

f(x + z)-f(x), zeFit

is a continuous linear function on Flt independent of x.
(iv) Every subspace of Ex with the properties (ii) and (iii) is a subspace 

of Fx •
(v) If (T, ep) denotes the conjugate of (Z), /’) in E2, then

m (F) = Ej + Ff
for every ÇeT.

Proof. We define h\ = (F-^)1, where e F. Thus, a point x e Ex is 
in Fx if and only if it is a constant function on F. Obviously F1 is a closed 
subspace. For x e D and z e Fx we have

sup (Ç (x + z}-(p (Ç)) = sup (Ç x - ep (§)) + %oz.
(je r

Hence x + zeD and f (x + z) - f (x) = z, which proves (ii) and (iii). Let 
y0 o be in a subspace with the properties (ii) and (iii). Then there exists 
a continuous linear function r| on the subspace generated by y0 such that 
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f (x + aj»0 ) - f (x) = T| (ay0)

for all x e D and all a e R. Let x0 c I) and Ç e T. Then we have

(£) = sup ßx-f (x))
x e D

> sup (Y (x0 + <xy0) - f (x0 + ay„))
ae R

= sup (§-r|)a^0 + ^x0-/,(x0),
aeR

which implies (Ç -T|) = 0. Hence = py>0 for all Ej c F, that is ,y0 c F1.
Thus (iv) has been proved. The last statement follows from

LY = (F^)11 = (m(r)-e11 = ™ (^)-t £eF.
We shall now make some further assumptions on the vector spaces Er 

and E2, namely that they are normed spaces, that the topologies induced 
by the norms are admissible and that

II X II = sup I Çx I, ||£||= sup I Ejx I 
imiii n*ii^i

^eE2 xeEt

for all x e E± and all Çe E2. In fact, this means that E1 and E2 are both 
reflexive Banach spaces, and each space is the dual of the other one.

Let Fx be a closed subspace of Er. It is easily verified that the function

II *11^  = sup I Çx I
II5IIS1 

ÇcFr1

is a semi-norm in Elf and that it has the following properties:
(i) I S*  I Il € II • Il x ||Fi for xeEj, Ç e Ff.
(ü) Il x H = H x ||Fx, xe Fi, if and only if F, = (o).

We note that || x ||Fi = inf2eFi || x-z || (cf. [7] p. 282).

5.2. Theorem. Let (1), f) be a closed convex function in Ex, and (T, <p) 
its conjugate in E2. Let F1 be the linearity space of (D, /'). Then a point 

e F2 is a relative interior point of T if and only if there exist an x0 e F1? 
a Q e R+ and a a e R such that

f (x)>q H x-x0 ||Fj-(T + ^o x

for all x e D. In particular, is an interior point of T if and only if there 
exist an xoeFx, a q c R+ and a a e R such that
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f (*)  > Q 11 X - Xo 11 - O + So X 
for all x e 1).

Proof. First, suppose that

/■ (x) > e I I X - Xo I |F1 - (T + Ç() X 
for ail x e 7). Then

sup (Ço x - f (x)) < O-
x e D

that is ^eE For every S e m (F) = So + Fj1 such that 11 S — 11 = 9 we have

sup (Sx-/‘(x))< sup (Çx-e II x-x0 ||Fi + (7-Çox) 
xe D xe D

= sup ((S - So) (x - Xo) - g 11 X - x0 I |F1) + (S - So) x0 + o 
xe D

< sup ((Il Ç - Ço II -e)ll x-Xol|Fi) + (^-U *o  + CT 
xe D

^(S-€o) Xo + U.

Hence S e F, which proves that So is a relative interior point of F. 
If for ail x e I)

/'(x) > g|| x-x0 H -a + Çox,

then F\ = (o). For let z0 c D and y0 e Fx. There exists a continuous linear 
function p on Fx such that for all a e R

f (z0 + a j0) = f (z0) + i"| (a jo)

> g|| z0 + aj0-x0 II -(T+^oOo + aJo) 

d a I • II Jo II - ell *o-*o  II -^Zo + U^Jo)-

This implies y0=o, that is Fx = (o). Hence 11 x ||2?i = 11 x 11 for all xeD, 
and the proof above yields that So is an interior point of F.

Next, let So he a relative interior point of F. Then <p is continuous at So 
(cf. 2.10). Consequently, there exist a g e R+ and a a e R such that

K = {S I S e m (F), 11 S - So 11 1 g) c F 
and

<p (S) a for all S e F.

For every x c D we then have
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/■(x) = sup (Ç x-?(£))> sup (Çx-<?(€))
Ç e F Ç e K

> sup Çx-ff = suj) (S - Ço) x - o + £j0 x
5 e K Ç c K

= pli x ||F1-(t + Çox.

Thus, we have an equality of the form desired, with xn = o.
If is an interior point of F, then Fx = (o). Hence || x || = || x ||Fj, and 

we have
/■(x) > o|| x II - cr + Éjox

for all x e I).

Now, the main theorem of this section follows immediately from theorem 
5.2 and the dual statement:

5.3. Theorem. Let Ex denote the class of closed convex functions (I), f) 
in E1 with the following two properties:

(i) I) has a non-empty relative interior.
(ii) For some xoeE1, Ç0eE2, q e R+ and oeR we have

f (x)>q\\ x - x()\\Fi-a+ ^0 X for xel),

F1 denoting the linearity space of (D, f).
The class of conjugates of the functions in (£x is the analogously defined class 

(i2 io E2, and conversely. If (7), f) in EA and (I1, ep) in E2 are closed convex 
functions with the property (i), such that each function is the conjugate of 
the other one, then (7), f) is in (ïx and (T, ep) is in (£2.

The same statement holds for the subclass <5?1 of consisting of those closed 
convex functions (D, f) for which

(i) I) has a non-empty interior.
(ii) For some xoeElt ^0eE2, o e R- and aeR we have

/■(x)^e||x-x0||-or + £0x for xcl).

In that case h\ = (o) for the functions involved.
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